Privacy Preserving Representations of 3D Point Clouds

Presented by : Hasindri Watawana University of Moratuwa

Supervisor : Kanchana Thilakarathna University of Sydney

What if everyone wears MR glasses

everyday?

everywhere?

Mixed Reality : Spatial Data Privacy Risk

Extract highly detailed 3D data with high accuracy ullet

Multi camera visual sensing, motion, hand gesture tracking.....

User space

Mixed Reality : Spatial Data Privacy Risk

• Sophisticated MR algorithms can infer knowledge about users

Mixed Reality : Spatial Data Privacy Risk

Unintended manipulation of private details by third party applications

Advertisements

Mixed Reality : Spatial Data Privacy Risk Privacy concerns

- Third parties
- Adversarial attackers

Spatial Privacy in Mixed Reality : Literature Review Privacy preserving framework

Introducing a protection layer to MR platform to hide sensitive information from 3D data before sending out for other third party applications. From Jaybie A. de Guzman, Kanchana Thilakarathna, and Aruna Seneviratne. 2019. Security and Privacy Approaches in Mixed Reality: A Literature Survey. ACM Comput. Surv. 52, 6, Article 110 (October 2019), 37 pages.

Rendered outputs

Input physical Environment

Privacy Preserving Transformations : Literature Review

Input access controls

Allowing data release to applications

Allow this device to access your data?

The connected device will be able to access data of your surroundings

3D spaces to planes

3D point clouds to Line clouds

Generalised Differential Privacy

Privacy Preserving Transformations : Literature Review

From Jaybie A. de Guzman, Kanchana Thilakarathna, and Aruna Seneviratne. 2019. Security and Privacy Approaches in Mixed Reality: A Literature Survey. ACM Comput. Surv. 52, 6, Article 110 (October 2019), 37 pages.

Spatial Privacy in Mixed Reality : User Preference

Physical space

MR device

Controlled Transformations on 3D Point Clouds

Physical space

MR device

Spatial Privacy in Mixed Reality : User Preference Literature Review

Controlled Transformations on 3D Point Clouds

Nama, A., Dharmasiri, A., Thilakarathna, K., Zomaya, A., & de Guzman, J. A. (2021). User configurable 3D object regeneration for spatial privacy. arXiv preprint arXiv:2108.08273

Spatial Privacy in Mixed Reality : User Preference Literature Review

Controlled Transformations on 3D Point Clouds

- Privacy-utility trade off
- User privacy preference input : privilege level value (p)
- 'p' decides the transformation of entire object

No fine grained privacy permissions

Latent vector/s (Part wise **Disentangled**)

Privacy-aware Latent vector/s

Representation Learning on 3D Point Clouds Convolutional Neural Networks

per point feature extraction Classification Network input mlp(64,64)feature transform nput points transform nx64 nx64 nx3 nx3 shared 64x64 3x3 T-Net T-Net transform transform matrix matrix multiply multiply

From Qi, Charles R and Su, Hao and Mo, Kaichun and Guibas, Leonidas J. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation". arXiv preprint arXiv:1612.00593 (2016).

Representation Learning on 3D Point Clouds Capsule Networks

"3D Point Capsule Networks". IEEE/CVF (2019).

Representation Learning on 3D Point Clouds 3D Capsule Encoder

First layers extracted from PointNet

Representation Learning on 3D Point Clouds 3D Capsule Encoder

Dynamic routing preserves

part-whole relationships

Representation Learning on 3D Point Clouds 3D Capsule Encoder

Multiple latent capsules

High dimensionality in latent space

Representation Learning on 3D Point Clouds 3D Capsule Decoder

- Due to dynamic routing, vectors in latent capsules act locally
- When transformed, each latent capsule forms a local patch of the 3D point cloud
- Local patches are glued together to get final reconstruction of the point cloud

Our Experimental Setup

- Dataset : Shapenet Part
- Latent Dimensions : 64x64
- Trained on reconstruction loss
- No part wise supervision

Experiments : Using a Capsule-based Point Cloud Representation Learning Network to Analyse Possibility of Privacy Preserving Transformations

Reconstruction Results

Experiments : Critical Point Analysis

Conclusion : Critical points identified by capsule network always lied in the skeleton of the point cloud

Experiments : 3D Point Cloud Part Segmentation & Part-wise Capsule Labelling

Possibility : changing only the capsules labels of part A to transform that part in point cloud

Experiments : Using Capsule-based Interpolation to Navigate a Point-Cloud towards a Generic representation

Unique Chair

Generic Chair

Conclusion and Future Work

- Capsules networks have the possibility to outperform traditional neural networks in point cloud learning
- We expect to improve part-wise capsule labelling accuracy
- Learn capsule labelling that can prioritise more unique parts
- Interpolation using capsules for preferred transformation
- Develop and end-to-end privacy preserving framework for MR

Thank You! Any Questions ?

Contact me for any questions : hasindri98.hsw@gmail.com